
CPS122 Lecture: Representing Associations; Arrays; Collections

Last revised January 26, 2022
Objectives:

1. To show how associations can be represented by references
2. To introduce arrays in Java
3. To show how associations can be represented by collections 

Materials:

1.  Demonstration programs and projectable versions: BadReverse.java, 
GoodReverse.java, EvenBetterReverse.java

2. Projectable version of code excerpts illustrating summing an array, using a 
basic for loop and enhanced for loop

3. Projectable version of code when an association class is used
4. Term project requirements

I. Introduction

A.  When we talked about defining classes, we noted that the instance 
variables of an object are used for two purposes.  What are they? 
 
ASK

1. To record what the object knows.

2. To record who the object knows - i.e. associations with other 
objects. 
 
It is this latter use of instance variables we talk about today - 
continuing the theme of the lecture on associations 
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II. Implementing Associations using Java References

A. The associations that are identified during the design phase will have 
to be implemented in the Java code implementing the various classes.  
This typically takes the following form:

1. For each different association that relates objects of a given class to 
other objects, there will be a field in each object containing a link to 
the appropriate object(s).

a) If the association is bidirectional, each participating class will 
need such a field.

b) If the association is unidirectional, only the class whose objects 
need to know about their partner(s) will have such a field. 

 

EXAMPLE: 

 

Consider two cases that we looked at earlier: 

 

    
 
PROJECT 
 

In the first case, each Book object will need a field linking to the 
associated Author object(s), and each Author object will need a 
field linking to the associated Book object(s).  (For simplicity in 
our code example, we will assume each Book has exactly one 
Author, and but Authors can writes multiple Books) 
 
 
 

Book

Author
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In the second each Client object will need a field linking to the 
associated Server object(s), but not vice-versa.   (For simplicity 
in our code example, we will assume each Client is connected to 
at most one Server) 
 

(This reduction in information that needs to be maintained is 
why we consider the possibility of unidirectional associations.) 
 
class Book  
{  
    ...  
    private Author author;  
    ...  
}  
 
class Author  
{  
    ...  
    private Book[] books;  
    ...  
}  
 
class Server  
{  
    // No reference to Clients needed  
}  
 
class Client  
{  
    ...  
    private Server server;  
    ...  
}  
 
PROJECT  

2. The field names may be derived from the other class (as in the 
examples above), or may be derived from the name of the 
association, or from the role names, if such are present.  
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EXAMPLE: Consider two cases we looked at earlier

a) In the first, instance variable names come from the names of two 
associations 
 

 
 
The code for Student might look like this: 
 
class Student  
{  
    ...  
    private Department [] majorsIn;  
    private Department [] minorsIn;  
    ...  
}  
 
PROJECT 

b) In the second, instance variable names come from role names: 
 
 

 
 
PROJECT 
 
The code for Employee might look like this (note the use of two 
instance variables to represent the association) 

 

class Employee  

Department Student
MajorsIn

MinorsIn

*

*

1..*

*

Employee

supervisor supervisee
1 *

Supervises
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{  
    ...  
    private Employee supervisor;  
    private Employee[] supervisees;  
}  
 
PROJECT 

3. There are a variety of different implementation approaches that can 
be used to actually realize the links. 

 
B. The simplest cases can be managed by using an ordinary variable.

1. If a given object can relate to only one other object in a given 
association (there is a “1” at the other end of the link), the easiest 
approach is to use a Java reference to the other object.

2. If the multiplicity is “0..1”, the same strategy can be used, with the 
reference being null if there is no related object for this association.

3. We used this approach for the Author of a Book (given the 
assumption that there was only one author) or for the Server a 
Client uses (given the assumption that a Client could connect to 
only one Server at a time.)

C. More complicated cases (like Books written by an Author, majors and 
minors of a student or supervisees of an Employee) may call for the 
use of an array.  

1. While Python includes a number of data structures that can be used 
to represent collections of objects. The Java language (and, indeed, 
most programming languages) only directly supports one - the 
array.   These are similar - but not at all identical to - Python lists.

2. An array is a sequence of items of some type, that can be references 
by position number within the array (the first item being item 0 and 
the last being array size - 1) 
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Example:  If we included the following in a program: 

 

Person [] persons;  
....  
persons = new Person[10]; 
 
then we would be able to refer to  Person[0], Person[1] ... 
Person[9], but not Person[10]. 
 
PROJECT 

3. If the multiplicity of an association is some fixed, small integer, or 
is limited by some small fixed integer, then we can use a field 
whose value is an array.  (We will discuss arrays in Java at the end 
of this lecture) 
 

EXAMPLE: Suppose we assume that a given student can have at 
most three majors and at most two minors.  Then we might include 
fields like the following in a Student object: 
 

Department [] majors;  
Department [] minors; 

 

And in the constructor we could include  
 

majors = new Department[3];  
minors = new Department[3];  
 
PROJECT 

a) Of course, there are dangers if you cannot be sure that the upper limit 
is definite.  However, three majors is probably enough for anyone!

b) This approach is also quite wasteful of space - since we include 
space for storing three majors and three minors in every student 
object, even though most students have just one major and many 
have no minors!
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D. When (the upper end of) the multiplicity range is “*” (or some large 
integer), this approach breaks down unless you know when the object 
is created how many other objects it will be related to (since arrays in 
Java are created with a fixed size).  A more flexible approach results 
from using Collections, which we will discuss after arrays, will 
explore in Lab 6, and will use in later labs and the team project.

III.Arrays in Java

A. We introduced arrays earlier as one way to represent an association.  

1. Actually, arrays are used for many purposes.

2. Some Java collections (and for that matter, collections in other 
languages) are actually be implemented using arrays, though using 
them does not require any knowledge of the implementation 
details.

3. Most programming languages support arrays - though Python does 
not.  The Python list is similar - but actually much more flexible, at 
the cost of using a more cumbersome implementation "under the 
hood."

B. To understand Java arrays, it is best to mentally start from scratch.

1. Recall that, in CPS121, we considered the following problem: we 
want to read in a list of 5 numbers and print them  out in reverse 
order.   In CPS121 we saw how Python lists could be used to solve 
this problem; today we will look at using Java arrays 
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a) Clearly, we need to read all of the numbers before we can print any of 
them out. This means we have to store all the numbers in variables.

b) One solution would be to use 5 variables: 

 

PROJECT BadReverse.java 

 

DEMO

c) However, needing to have 5 distinct variables is cumbersome, and an 
approach like this would become essentially impossible if we were 
working, say, with 100 numbers, or 1000, or 10,000 !

d) To deal with situations like this, Java - like most programming 
languages - provides a built in data structure called an array.  In 
Java, a variable is declared to be an array by following the type 
name with a pair of square brackets ([]), and individual elements 
in the array can be referenced by following the name of the 
variable with a subscript enclosed in square brackets.   In 
particular, our example could be handled as follows: 

 

PROJECT  GoodReverse.java 

 

DEMO 

 

Note that the complete program is now  shorter than the original 
program - and would be much shorter if we compared programs 
for a larger number of values.  Further, it could easily be 
modified to work with any number of numbers by changing the 
initial declaration of the size of the array.  Every Java array has 
a field called length with specifies the number of elements 
specified when the array was created.  (Note that, for arrays, this 
is a field, not a method, so no () are used.)

e) In fact, it would be easy to create a variant of this program 
which allows the user to specify the number of numbers when 
the program is run. 

 

PROJECT  EvenBetterReverse.java 

 

DEMO
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2. Recall that, at the start of the course, we said that Java has two basic 
kinds of data types: primitive types and reference types.  The latter 
category has two subcategories - objects and arrays.  Arrays in Java can 
be thought of as a special kind of object); however, the formal definition 
of the language distinguishes them because of slight differences in the 
way they are used.  (For example, arrays have no methods).

C. To use an array in Java, you must:

1. Declare an array variable - two alternative, but equivalent syntaxes: 

 

< type > [] < variable name > (preferred) 

 

Example:  int [] number; 
or 

 

< type > < variable name > [] (“C” style declaration) 

 

Example: int number [];  

 

In this respect, Java arrays are quite different from Python lists.  This 
requirement follows from the fact that Java is statically typed.

2. Allocate storage for the array, using new 

 

< variable name > = new < type > [ < size > ]

a) The type used here must be the same as the type used when declaring 
the variable

b) Thought the size is left unspecified when the array is declared, it must 
be specified at the time the array is created - it can either be an integer 
constant, or an integer variable or expression; in the latter case, the 
value of any variables at the time the array is created are what is used.) 

 

Example: number = new int [5];

c) Creation can be combined with declaration 

 

< type >< variable name >[] = new < type > [ <size> ] 

 

Example: int [] number = new int [5];  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PROJECT the different examples

d) As was the case with the need for declaration, Java arrays are here 
quite different from Python lists.  

3. Once an array has been declared and created, operations on it are 
quite similar to Python lists.  You can:

a) Refer to the array as a whole by using its name

b) Refer to the individual elements of the array by using 

 

< variable name > [ < subscript > ] 

 

where < subscript > is an integer in the range 0 .. size - 1 
 
Examples: number[3]  

number[2*i+1]  
 
(Note: Like Python lists, Java arrays use zero-origin indexing.  An 
array declared with size n has elements 0 .. n - 1).  So, the first element 
is called [0], the second [1] ...

c) Note the distinction between the variable name all by itself - which 
stands for the entire array, and the variable name plus subscript, which 
stands for an individual element  of the array. Operations such as 
arithmetic, input, and output are done on the individual elements. 

 

Example: If a given building is a single family home, you can address 
mail directly to it.  If it is an apartment building, you must specify a 
particular apartment by giving an apartment number as well.  You can 
refer to the whole building for certain purposes - such as tax 
assessment - but most of the time you will need to refer to a specific 
apartment by number.

d) Refer to the number of elements in the array by 

 

< variable name > . length 

 

Example: number.length  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PROJECT the different examples

D. One important characteristic of an array is that all of the elements of 
the array have the same type.  The type of the elements of an array, 
however, can be any valid Java type.

1. A primitive type (boolean, char, int, etc.) - as in the example above

2. An object type.  In this case, it is necessary not only to create the 
array, but also to create the individual elements of the array - since 
they are objects. 
 
This is typically what we will use when using an array to model an 
association.

3. Another array type - yielding an array of arrays, or a 
multidimensional array.  

E. Array initializers

1. Ordinarily, when an array is created, its elements are initialized to the 
default initial value for the type involved - e.g. zero for numbers, ‘\000’ 
for characters, false for booleans, or null for reference types.  

 

(null is a Java reserved word  For any reference type, null is the 
value that means the variable does not (yet) refer to anything.  It is 
always an error to try to execute any method of a variable that is null)

2. It is possible, however, to specify the initial value for an array when 
it is declared - in which case an abbreviated notation is used that 
combines declaration, creation, and initialization. 
 
< type >[ ] < variable name > = { < expression > , < 
expression > ... }  

 

EXAMPLES
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a) An array containing of all the prime integers between 1 and 20: 

 

int [ ] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };

b) An array of strings containing the names of the people in the 
first row of the room 

 

String [] names = { --- whatever --- };

c) Typically, when we initialize an array this way, we use constants 
as the initializers.  Actually, though, it is possible to use an Java 
expression whose value can be calculated at the point the array 
is declared - but we won’t pursue this further. 
 
PROJECT the different examples

F. Operations on Arrays - e.g. searching, sorting etc. - are the same with 
Java arrays as they are with Python lists, so we'll give just one 
example, but otherwise we won't pursue this topic any further. 
 
Example: Calculating the sum of all the elements in an array. 

1. Suppose we have an array x of doubles.  To store their sum in a 
variable called sum, we could proceed as follows:  

 

double sum = 0.0;  
for (int i = 0; i < x.length; i ++)  
    sum += x[i]; 

 

PROJECT 
 
This is similar to Python for item in range ... 

2. Alternately, if we want to work with all the elements of the array - 
as is the case here - we could use an alternate form of the for loop 
(called the enhanced for loop,) 

 

double sum = 0.0;  
for (double item : x)  
    sum += item; 
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PROJECT 

 

(The meaning is that item is a double which should successively 
taken on the value of each element of the array x.   
 
This is similar to Python for item in list:

IV.Collections in Java

A. As we noted earlier, while arrays can be used to model associations, 
there are often problems with doing so, related to the fact that the size 
of an array must be specified when it is created.  The more common 
alternative is to use one of the standard collections that are part of the 
Java library.  (The library actually implements these collections by 
using arrays - but this is not something we need to concern ourselves 
with.)

B. The Collections facility is part of the java.util package

1. A Collection is a group of objects that supports operations like:

a) Adding objects to the Collection.

b) Removing an object from the Collection.

c) Accessing individual objects in the Collection. 
 

(Note that an array can be thought of as a very simple and 
limited form of Collection, but doesn’t offer the full elegance of 
the Collections facility in the Java library)

2. We will see in lab that Java Collections are of three basic types:

a) Sets are collections in which a given object may appear at most 
once, and there is no ordering.

(1)If a collection is a set, it is legitimate to ask the question “is 
this particular object in the collection?” (yes or no).
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(2)It is also legitimate to make the request “add this object to 
the collection”. (Provided it’s not already there.)

(3)Finally, it is legitimate to make the request “remove this 
object from the collection”. (Provided it is in the collection 
to begin with.)

(4)However, it is not legitimate to ask "what is the first object in 
the collection"?, since sets are unordered.

(5)A simple associations with mutiplicity greater than 1 is often 
represented using a Set.

b) Sequences are collections in which the contents are regarded as 
having some sequential order.  (Note: the Java library calls these 
“Lists”), and multiple occurrences of an object are allowed.

(1)Sequences support all the operations we just discussed for 
sets.

(2)In addition, if a collection is a sequence, it is legitimate to 
ask questions like “what is the first object in the sequence?” 
or “what is the last object?” or “what is the ith object?”.   
(Provided the collection is non-empty, in the first two cases - 
or has at least i+1 elements, in the last case - since elements 
are numbered starting at 0 - so to get, say, item 2 the 
collection must contain at least three elements.) 

(3)It is also legitimate to make requests like “add this object at 
the very front”  or “add this object at the very end” or “add 
this object in position i”.  (Provided the collection has at least 
i elements in the last case.)

(4)Finally, it is legitimate to make requests like “remove the 
first object” or “remove the last object” or “remove the ith 
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object”. (Provided the collection is non-empty, in the first 
two cases - or has at least i+1 elements, in the last case.) 

(5)Sequences are commonly used for associations that have an 
inherent order (denoted by the UML stereotype { ordered })

c) Maps are collections of key-value pairs.  (Actually, Java Maps are 
not technically Collections due to some implementation issues, but 
it is common to speak of them as “small c” collections.)

(1)Though the same value may occur many times in the map, 
each key is associated with at most one value.

(2)If a collection is a map, it is legitimate to ask questions like 
“what value - if any - is associated with the following key?” 
or “does this map contain the following key?”.

(3)It is also legitimate to make the request “put the following key-
value pair in the map”.  This can have one of two effects:

(a)If the key was not in the map to begin with, it is added 
with the specified value.

(b)If it was in the map, but with a different value, the old value is 
removed and the new value is associated with the key.

(4)Finally, it is legitimate to make the request “remove the 
following key from the map”.  If the key was in the map, it 
and its associated value are removed; if not, nothing happens.

(a)Maps are often used for qualified associations, with the qualifier 
serving as the key, and the associated object the value 
 

EXAMPLE: The qualified association between a college and its 
students could be represented by a map (stored in the college 
object) consisting of pairs where the student id (an integer) is 
the key and the corresponding student object is the value. 
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class College  
{  
    ...  
    Map<Integer, Student> students;  
    ...  
}  
 
PROJECT

d) For all types of Collections, it is possible to create an Iterator 
object that makes it possible to access each item in the 
collection once.

(1)For sequences, the order in which items are accessed by an 
Iterator is the sequential order first, second ...

(2)For sets and maps, the order is implementation-determined. 

(3)In the case of maps, the Iterator is actually obtained from either its 
set of keys or its set of values.  (Most often from its set of keys)

3. The Java Collections library contains two or more implementations 
for each of the different types of collection.  The different 
implementations of a given type of Collection have the same 
behavior, but have different performance characteristics.

a) For List (Sequence), the Java library supplies:

(1)LinkedList - good if the list changes size (grows or shrinks) 
frequently), good for accessing either end of the list, but 
slower when accessing items in the middle of the list

(2)ArrayList - good if accessing elements by specific position, 
but slower for adds and removes.

b) For Set, the Java library supplies:
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(1)HashSet - more efficient in most cases

(2)TreeSet - an iterator will access the elements of the set in a 
specific order based on their value (e.g. Strings would be 
kept in alphabetical order.)

c) For Map, the Java library supplies:

(1)HashMap - more efficient in most cases

(2)TreeMap - an iterator obtained from the key set will access 
the elements of the map in key order.

4. In an upcoming lab, one of your major tasks will be to identify 
appropriate ways to represent various associations using the 
different types of collection.  (Just to make it interesting, you will 
need to use several different types :-))

C. An interesting problem arises if an association has attributes associated 
with the association itself (not just the participating objects).

1. Example: Consider the enrollment of a student in a course.  Assume 
an enrollment is kept even after the course ends, and contains as an 
attribute the final grade earned - which is needed for things like 
producing a transcript or calculating a gpa. 
 
Observe that the grade is an attribute of the enrollment relationship, 
but not of the individual student or course.

a) A given student will earn different grades in different courses.

b) A given course will normally have different final grades for 
different stuedents.

2. In a case like this, something called an association class must be 
used.  In the case of enrollment, this can be pictured as follows:
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PROJECT 

a) Each participating object contains a reference to the association 
class object.

b) The association class object contains references to each of the related 
objects. 
 

EXAMPLE:
c)  

class Course {  
(Some sort of collection of references to  
  EnrolledIn objects) enrolledIn;  

  ...  
  }  
 
class Student { 

(Some sort of collection of references to  
  EnrolledIn objects) enrolledIn;  

  ...  
  }  
 
class EnrolledIn {  

Course course;  
Student student;  
Grade grade;  
...  

  }  
 
PROJECT 

Course Student
* *

EnrolledIn

grade: Grade
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D. Now, let’s think about the various associations in the Library problem and 
how they might be represented by Java collections:   

1. The requirements for iteration 1 imply the need for classes Book, 
DVD generalized by Item, Patron.  There is also a need for a 
LibraryDatabase to own the collections of Items etc.

2. First, we need to consider an interesting (and actually quite tricky) 
issue that arises in connection with Items.   

a) Typically, a library carries multiple copies of popular books.

(1)Presumably, we need a separate object for each copy, since 
each can be rented to a different patron, be due on a different 
day, etc.. 

(2)At the same time, we want to associate all kinds of 
information with a copy - its call number, title, author.   

b) One problematic way to handle this is as follows: 
 
class Copy  
{  
    private String bookCallNumber;  
    private int copyNumber;  
    private String bookTitle;  
    private String bookAuthor;  
    ...  
}  

 
PROJECT 
 
But this is seriously problemanatic. 
 
Why? 
 
ASK  
    

(a)Wasteful of space

19



(b)Makes extra work when a new copy comes in

(c)Suppose we needed to correct a piece of information fir some 
reason.  We would need to make this change in each copy.

(d)Moreover, when we accept a reservation for a particular item, 
we don’t want to associate the reservation with a specific copy - 
we want to associate it with the item itself.  Why? 
 

ASK 

c) There is another even more problematic way to handle a case like this:

(1)Create a separate class for each item.  Thus, we would have a 
class for each book we carry.   

(a)The various items of information we would want to record about 
an item could be represented as mehods of the appropriate class 
- e.g. we would have something like 
 

class StudentGuideToOODevelopment  
{  
  String getCallNumber()  
  {  
    return "QA76.9.O35";  
  }  
  String getTitle()  
  {  
    return "A Student Guide to OO Development";  
  }  
  String getAuthor()  
  {  
    return "Britton, Carol";  
  }  
 ...  
}  
 
PROJECT 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(b)A copy would be represented by an object of the 
appropriate class.   Thus, if we had 3 copies of the book, 
each would be represented by an object of class 
StudentGuideToOODevelopment - 3 in all.

(2)Why is this very problematic? 

 

ASK

(a)A serious problem is that we have to create a new class every 
time a new book is acquired.   This means that the software 
would have to be revised and recompiled frequently!

(b)A similar problem is that any change to information 
stored about a book would necessitate revising and 
recompiling the software.

d) A much better way is to make use of a design pattern, which is, in 
essence, a good solution to a commonly-occurring tricky problem.  
(We will talk about design patterns later in the course.)  In this case, 
we want to use a pattern known as the Abstraction-Occurrence pattern.

(1)In essence, what we want to do is to use two classes to 
represent items.

(a)One class - which we might call something like Item - 
represents the abstraction.  

i) There would be, then one object of class Item for A 
Student Guide to OO Development, another for  Java 
Backpack Guide ...  

ii) This one object holds all the information that pertains 
to all copies of the item - call number, title, author.

iii)When a new item is added to our collection we create 
a new object of this class to represent it.
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(b)A second class - which we might call Copy - represents 
the occurrence. 

i) There would be one object of this class for each 
physical copy of an item that we own - thus, if we had 
3 copies of A Student Guide ..., there would be 3 
objects of class Copy representing them. 

ii) Each object of class Copy would be associated with 
the object of class Item to which it pertains. 

(c)If the library owned 10,000 copies in all, representing 
5000 different items, there would, in total, be 10,000 
objects of class Copy, and 5000 objects of class Item.

(d)We might show this in UML as follows: 
 

 
 
PROJECT

i) Composition is appropriate here, because, 

(1)At least as far as the library is concerned, an item is 
composed of its copies

(2)Each copy is associated with one and only one item

«abstraction»
Item

«occurrence»
 Copy

*
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(3)A copy of one item can never be associated with a 
different item

ii) Explain concepts of multiplicity, navigability.

iii)A multiplicity of * is appropriate on the Copy end, because 
a given Item can have an arbitrary number of copies.  (We 
might even have 0 for a short time, if our only copy is lost 
and we’re waiting for a reorder to come in)

iv)Bidirectional navigability is appropriate, because me want 
to be able to answer both of the following kinds of question:

(1)What copies of “A Student Guide to OO 
Development” do we own?

(2)What is the author of the item that a QA76.9.O35 
copy 1 is a copy of?

3. Of course, we need to have an association between the 
LibraryDatabase and the items it owns.   Clearly this is 1..*.  

a) What navigability is appropriate here? 
 

ASK

b) What type of collection is appropriate in the LibraryDatabase 
object to hold references to Item objects for this case? 
 

ASK 
 

Map, keyed on something like the call number of the item.   The 
LibraryDatabase object would have a declaration like 
 

Map <String, Item> items; 

 

But nothing would be needed in the Item object, since we have no 
need to navigate from a Item to the (one and only) 
LibraryDatabase.
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4. Again, we need an association between the LibraryDatabase and 
the Copies it owns as well.  Clearly, this is also 1..*  When a patron 
wants to checkout a copy, the call number and copy number on the 
copy is used to find the appropriate object to associate with the 
patron.

a) What navigability is appropriate here? 

 

ASK

b) What type of collection is appropriate in the LibraryDatabase 
object to hold references to Copy objects for this case? 

 

ASK 

 

Map, keyed on the copy’s call number and copy number (which 
could be concatenated to form a single String).   The 
LibraryDatabase object would have a declaration like 

 

Map <String, Copy > copies;  
 
PROJECT 

 

But nothing would be needed in the copy object, since we have 
no need to navigate from an item to the (one and only) 
LibraryDatabase

5. The association between the LibraryDatabase and its Patrons is 
clearly 1:*.  When a patron wants to check out one or more copies, 
his or her phone number is used to access the stored information on 
the patron. 

a) What navigability is appropriate here? 
 

ASK

b) What type of collection is appropriate in the LibraryDatabase 
object to hold references to Patron objects for this case? 
 

ASK 
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Map, keyed on the patron's phone number.   The LibraryDatabase 
object would have a declaration like 
 

Map < String, Patron > patrons; 

 

PROJECT
c)  

But nothing would be needed in the Patron object, since we have no 
need to navigate from a Patron to the (one and only) 
LibraryDatabase.

6. We have already said that we need an association between a patron 
and the specific copies the patron has out. 

a) What is the multiplicity here? 
 
0..1 : * - a copy is either out to 1 patron, or it’s on the shelf; but 
a patron can have any number of copies out

b) In this case, we need bidirectional navigability, so we can 
answer questions like

(1)What copies does patron 555-1234 have out?

(2)What patron rented copy QA76.9.O35 copy 1 (that was 
just returned)

c) Observe that the act of checking out an item involves an attributes - 
e.g. date due.

(1)At first glance this would appear to call for the use of an 
association class, since a checkout has an attribute dateDue 
which is not an attribute of the Patron.

(2)However, in this case it is possible to store both the Patron 
the item is checked out to and the dueDate in the Copy 
object, since a Copy can only be checked out to one Patron at 
a time: 
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class Copy  
{  
    ...  
    // The next two instance variables are null  
    // if the Copy is on the shelf  
    private Patron checkedOutTo;  
    private Date dateDue:  
    ...  
}  
 
PROJECT

(3)A word to the wise: in previous years some have attempted 
to use an association class here - but this approach is much 
simpler!

7. As we look ahead, we can see that we also need an association 
between a patron and the items he/she has reservations for.   

a) What is the multiplicity here? 

 

ASK 

 

It must be * .. * - any number of patrons can have a reservation for a 
given item, and a patron can have reservations for multiple items.

b) In this case, we probably want bidirectional navigability, so we 
can answer questions like

(1)Who has reservations for QA76.9.O35?

(2)What reservations does patron 555-1234 have?

c) Presumably, we want to keep track of reservations on a first-
come first-served basis.  This being the case, what sort of 
collection is needed in an Item object to keep track of the 
patrons who have a reservation for the item? 

 

ASK
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8. What would we need to do to this structure to also handle dvd? 

 

ASK

a) Make Item an abstract base class with concrete subclasses Book 
and DVD.

b) Copies and reservations are still associated with an Item.  But 
certain operations (e.g. determining a due date) are delegated to 
the appropriate concrete class via abstract methods.  That’s all 
we need to do!

9. Finally, we need to consider that matter of Fines.  If we have a Fine 
object, then a collection of Fines can be included in a Patron object. 
 
What sort of collection is appropriate here? 
 
ASK 
 
Probably some sort of Set, since there is no obvious key for a Map.

10.For Milestone 1-2, you will produce a class diagram.  You would 
do well to refer to the above discussion when creating this!
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